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Symbolic Time-Series Analysis for Anomaly
Detection in Mechanical Systems

Amol Khatkhate, Asok Ray, Fellow, IEEE, Eric Keller, Shalabh Gupta, and Shin C. Chin

Abstract—This paper examines the efficacy of a novel method
for anomaly detection in mechanical systems, which makes use
of a hidden Markov model, derived from the time-series data of
pertinent measurement(s). The core concept of the anomaly de-
tection method is symbolic time-series analysis that is built upon
the principles of Automata Theory, Information Theory, and Pat-
tern Recognition. The performance of this method is compared
with that of other existing pattern-recognition techniques from
the perspective of early detection of small fatigue cracks in duc-
tile alloy structures. The experimental apparatus, on which the
anomaly detection method is tested, is a multi-degree-of-freedom
mass-beam structure excited by oscillatory motion of two electro-
magnetic shakers. The evolution of fatigue crack damage at one or
more failure sites are detected from symbolic time-series analysis
of displacement sensor signals.

Index Terms—Anomaly detection, fatigue crack damage, sym-
bolic dynamics, time-series analysis.

I. INTRODUCTION

AN ANOMALY is defined as deviation from the nominal
behavior of a dynamical system and is often associated

with parametric and nonparametric changes that may gradually
evolve in time. Anomalies may manifest themselves with self-
excitation within the dynamical system, or under excitation of
exogenous stimuli. On the sole basis of the fundamental prin-
ciples of physics, the accurate and computationally tractable
modeling of complex system dynamics is often infeasible; such
a model may only exhibit the ensemble-averaged behavior of
the physical process [1]. Therefore, it is necessary to rely on
time-series data generated from sensors and other sources of
information [2].

Several researchers [3]–[5] have addressed the problem of
structural health monitoring based on time-series data. Along
this line, a novel concept of anomaly detection has been pro-
posed by Ray [6], where the underlying information on the
dynamical behavior of complex systems is derived based on the
following assumptions:

1) the process has stationary dynamics at the fast time scale;
2) any observable nonstationary behavior is associated with

changes evolving at the slow time scale at which anomalies
may occur.
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The above-mentioned method of anomaly detection requires
both temporal and spatial discretization of the pertinent mea-
surement data to construct a sequence of symbols [7], [8]. The
symbol sequence is treated as a transform of the original time-
series data of measurements from the phase space into a sym-
bol space such that no significant information is lost [9], [10].
This transform method is called symbolic time-series analysis
in technical literature [2].

This paper makes use of symbolic time-series analysis for
early detection of small anomalies, resulting from fatigue crack
damage in ductile alloys, which is a major source of failures in
structural components of operating machinery [11]. The objec-
tive is to capture this information from the observed time-series
data as early as possible so that the decision and control system
may take appropriate actions to avert catastrophic failures and
satisfy the mission requirements albeit at a degraded level of
performance [12].

The anomaly detection method is experimentally validated
on a laboratory-scale test apparatus, where the source of possi-
ble anomalies is fatigue damage in vibrating mechanical struc-
tures. (Note that the evolution of fatigue damage is several or-
ders of magnitude slower than the structural dynamics.) The
test apparatus is designed to have sufficient complexity in it-
self due to partially correlated interactions amongst its indi-
vidual components and functional modules [1]. Performance
and efficacy of the proposed anomaly detection method has
been assessed for detection of slowly evolving fatigue dam-
age in the short-crack regime by comparison with other ex-
isting pattern recognition techniques, such as principal com-
ponent analysis (PCA), multilayer perceptron neural networks
(MLPNN), and radial basis function neural networks (RBFNN)
[13]–[15].

The paper is organized into eight sections including the pre-
sentone. Section II briefly describes the test apparatus for exper-
imental validation of anomaly detection. Section III discusses
how fatigue crack damage evolves as an anomaly in the dy-
namical behavior of the test apparatus. Section IV briefly re-
views the basic concepts of symbolic dynamics for anomaly
detection in complex systems. Section V introduces the D-
Markov machine method [6] for anomaly detection. Section VI
presents existing pattern-recognition techniques that have rele-
vance in the present context of anomaly detection. Section VII
presents the experimental results and compares the D-Markov
machine method with other existing pattern-recognition tech-
niques from the perspective of early detection of small fatigue
cracks in ductile alloys. Finally, the paper is summarized and
concluded in Section VIII with recommendations for future
research.
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Fig. 1. Schematic diagram for the test apparatus.

TABLE I
STRUCTURAL DIMENSIONS OF THE TEST APPARATUS

II. DESCRIPTION OF THE TEST APPARATUS

The test apparatus is designed and fabricated as a multi-
degree-of-freedom (DOF) mass-beam structure excited by
oscillatory motion of two vibrators as shown in Fig. 1. Physical
dimensions of the pertinent components are listed in Table I.
Two of the three major DOFs are directly controlled by the two
actuators, Shaker #1 and Shaker #2, and the remaining DOF is
observable via displacement measurements of the three vibrat-
ing masses: Mass #1, Mass #2, and Mass #3. The inputs to the
multivariable mechanical structure are the forces exerted by the
two actuators; and the outputs to be controlled are the displace-
ments of Mass #2 and Mass #3. The failure site in each specimen,
attached to the respective mass is a circular hole (of radius 3.81
mm) as shown in Fig. 1. The test apparatus system is logically
partitioned into two subsystems: 1) the plant subsystem consist-
ing of the mechanical structure including the test specimens to
undergo fatigue crack damage, actuators and sensors and 2) the
instrumentation and control subsystem consisting of computers,
data acquisition and processing, and communications hardware
and software. Frequency of the reference signal is 11.39 Hz
that is the resonating frequency associated with Mass #3 in the
mechanical structure. The test specimens are thus excited by
different levels of cyclic stress as two of the specimens are di-
rectly affected by the vibratory inputs while the remaining one

is subjected to resulting stresses, thus functioning as a coupling
between the two vibrating systems. In the present configura-
tion, three test specimens are identically manufactured and their
material is 6061-T6 aluminum alloy. Nevertheless, different ma-
terials can be selected for individual specimens that may also
undergo different manufacturing procedures. Future research
will allow different materials and manufacturing methods for
individual specimens.

III. GENERATION OF FATIGUE CRACK ANOMALY

The mechanical system of the test apparatus in Fig. 1 is per-
sistently excited near resonance so as to induce a stress level that
causes fatigue failure to yield an average life of approximately
20 000 cycles having a total duration of about 32 min. There ex-
ists considerable scatter in the fatigue data, and variations have
been seen in the actual observed life of the specimens tested at
an identical stress level. The scatter results as a consequence of
fatigue sensitivity to a number of test and material parameters
including specimen fabrication and surface preparation, metal-
lurgical variables, specimen alignment in the apparatus, mean
stress, and test frequency [16]. These uncertainty factors were
taken into consideration for design of the three failure sites as
shown in Fig. 1.

The dynamical system attains stationary behavior, in the fast
time scale of machine vibrations, under persistent excitation
in the vicinity of the resonant frequency. The applied stress is
dominantly flexural (i.e., bending) in nature and the amplitude of
oscillations is symmetrical about the zero mean level, i.e., it is a
reversed stress cycle [17]. Under such cyclic loading conditions,
the specimens undergo fatigue cracking where the gross stress
is elastic and plasticity is only localized. The fatigue damage
occurs at a time scale that is (several order of magnitude) slow
relative to the fast time scale dynamics of the vibratory motion
and eventually leads to a catastrophic failure. Close observation
indicates that fatigue failure develops in the following pattern:
1) the repeated cyclic stress causes incremental crystallographic
slip and formation of persistent slip bands; 2) gradual reduction
of ductility in the strain-hardened areas results in the formation
of submicroscopic cracks; and 3) the notch effect of the submi-
croscopic cracks concentrates stresses until complete fracture
occurs. Crack initiation may occur at a microscopic inclusion or
at local site(s) of local stress concentration. In this experimental
apparatus, the sites of stress concentration are localized by creat-
ing a hole in each of the three specimens. Since the mechanical
structure of the test apparatus consists of beams and masses,
the underlying dynamics can be approximated by a finite set
of first-order coupled differential equations with parameters of
damping and stiffness. The damping coefficients are very small
and the stiffness constants very slowly change due to the evolv-
ing fatigue crack. The main objective of the work reported in this
paper is to detect the slowly evolving anomaly (i.e., decrease
in stiffness) at an early stage by observing time-series data of
the available displacement measuring sensors. (Additional ul-
trasonic sensors will be installed at local crack sites in future for
enhancement of anomaly detection.)
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Fig. 2. Conceptual view of symbolic time-series analysis.

IV. SYMBOLIC DYNAMICS AND ENCODING

The concept of Symbolic Dynamics and its usage for encoding
nonlinear system dynamics from the observed time-series data
have been reported in literature [2], [6]. It serves as a tool for
behavior description of nonlinear dynamical systems based on
the concept of formal languages for transitions from smooth
dynamics to a discrete symbolic description [1], [6].

Fig. 2 elucidates partitioning of a compact (i.e., closed and
bounded) region of the phase space and a mapping from the
partitioned space into the symbol alphabet, which becomes a
representation of the system dynamics defined by the trajecto-
ries. It also shows the construction of a hidden Markov model
(HMM) from the symbol sequence as a finite-state machine. The
quasi-stationary probability histograms of the states represent
patterns that are indicative of the nominal (or reference) and
anomalous behavior of the dynamical system, as explained in
later sections.

Several methods of phase-space partitioning have been sug-
gested in the literature [1], [18], [19]. One such method is sym-
bolic false nearest neighbors (SFNN) [9] that finds a “gen-
erating” partition for symbolic orbits to uniquely identify a
continuous-space orbit; thus, the symbolic dynamics become
equivalent to the continuous-space dynamics. The key criterion
for SFNN partitioning is that short sequences of consecutive
symbols ought to localize the corresponding phase-space points
as closely as possible. This is achieved by forming a particu-
lar geometrical embedding of the symbolic sequence under the
candidate partition and minimizing the apparent errors in local-
izing phase-space points. The nearest neighbor to each point
in the embedding is found in terms of Euclidean distance of
symbolic neighbors. In general, better partitions yield a smaller
proportion of SFNN. For convenience of implementation, the
partitions are parameterized with a relatively small number of
free parameters. This is accomplished by defining the partitions
with respect to a set of radial-basis “influence” functions. The
statistic for SFNN is minimized over these free parameters using
genetic algorithms [9]. However, this partitioning method may

become computationally very inefficient when the dimension of
the phase space is large or if the data set is contaminated by
noise.

This paper has adopted an alternative partitioning approach
for construction of symbol sequences from the time-series
data, which is particularly effective for noisy data from high-
dimensional dynamical systems. In this method, called wavelet
space (WS) partitioning [6], [10], the time-series data are first
converted to the wavelet transform data at different scales and
time shifts. The graphs of wavelet coefficients versus scale, at
selected time shifts, are stacked starting with the smallest value
of scale and ending with its largest value and then back from the
largest value to the smallest value of the scale at the next instant
of time shift. The arrangement of the resulting scale series data
in the WS is then partitioned with alphabet size |A| by horizontal
lines such that the regions with more information are partitioned
finer and those with sparse information are partitioned coarser.
In this approach, the maximum entropy is achieved by the par-
tition that induces uniform probability distribution of the sym-
bols in the symbol alphabet. Uniform probability distribution is
a consequence of the maximum entropy partitioning.

V. D-MARKOV MACHINE MODEL

This section introduces the D-Markov machine model [6] for
representing patterns in a symbolic process, which is motivated
from the perspective of anomaly detection and is an alternative to
the ε-machine [20]. The core concept of the D-Markov machine
is succinctly presented below.

Let the symbolic representation of a discrete-time,
discrete-valued stochastic process be denoted by: S ≡
. . . S−2S−1S0S1S2 . . .. At any instant t, this sequence of ran-
dom variables can be split into a sequence

←−
S t of the past and

a sequence
−→
S t of the future. Assuming conditional stationarity

of the symbolic process S (i.e., P [−→S t |
←−
S t = ←−s ] being indepen-

dent of t), the subscript t can be dropped to denote the past and
future sequences as

←−
S and

−→
S , respectively. A symbol string,

made of the first L symbols of
−→
S , is denoted by

−→
S

L
. Similarly,

a symbol string, made of the last L symbols of
←−
S , is denoted

by
←−
S

L
.

For D ∈ N, the set of positive integers, a stochastic symbolic
stationary process is called Dth-order Markov process if the
probability of the next symbol depends only on the previous D
symbols, i.e., the following condition holds:

P (si |si−1si−2 . . .) = P (si |si−1 . . . si−D ). (1)

Alternatively, symbol strings
←−
S ,

←−
S

′ ∈ ←−S become indistin-

guishable whenever the respective substrings
←−
S

D
and

←−
S

′D
,

made of the most recent D symbols, are identical. Thus, a set

{←−S L
: L ≥ D} of symbol stings can be partitioned into a max-

imum of |A|D equivalence classes [6], where A is the sym-

bol alphabet. Each symbol string in {←−S L
: L ≥ D}, derived

from a stationary process, belongs to exactly one of the |A|D
equivalence classes. Given D ∈ N and a symbol string ←−s with
|←−s | = D, the effective state q (D,←−s ) is the equivalence class
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of symbol strings defined as

q(D,←−s ) = {←−S ∈ ←−S : ←−S D
= ←−s } (2)

and the set Q(D) of effective states of the symbolic process is
the collection of all such equivalence classes. That is

Q(D) = {q(D,←−s ) : ←−s ∈ ←−S D} (3)

and hence |Q(D)| = |A|D . A random variable for a state in the
above set Q of states is denoted by Q and the jth state as qj .
The probability of transitions from state qj to state qk is defined
as

πjk = P (s ∈ −→
S

1|qj ∈ Q, (s, qj ) → qk )∑
k

πjk = 1. (4)

Given an initial state and the next symbol from the original
process, only certain successor states are accessible. This is
represented as the allowed state transitions resulting from a
single symbol. Note that πij = 0 if s2s3 . . . sD �= s′1 . . . s′D−1

whenever qi ≡ s1s2 . . . sD and qj ≡ s′1s
′
2 . . . s′D . Thus, for a

D-Markov machine, the stochastic matrix Π ≡ [πij ] becomes a
branded matrix with at most |A|D+1 nonzero entries. The left
eigenvector p corresponding to the unit eigenvalue of Π is the
state probability vector under the (fast time scale) stationary
condition of the dynamical system.

The construction of a D-Markov machine is fairly straight-
forward. Given D ∈ N, the states are as defined in (2) and
(3). On a given symbol sequence S, a window of length
(D − 1) is slided by keeping a count of occurrences of se-
quences si1 . . . siD

siD +1 and si1 . . . siD
which are respectively

denoted by N(si1 . . . siD
siD +1) and N(si1 . . . siD

). Note that if
N(si1 . . . siD

) = 0, then the state q ≡ si1 . . . siD
∈ Q has zero

probability of occurrence. For N(si1 . . . siD
) �= 0, the transi-

tions probabilities are then obtained by these frequency counts
as follows:

πjk =
P (si1 . . . siD

s)
P (si1 . . . siD

)
≈ N(si1 . . . siD

s)
N(si1 . . . siD

)
(5)

where the corresponding states are denoted by qj ≡
si1si2 . . . siD

and qk ≡ si2 . . . siD
s.

The time-series data under the nominal condition generates
the state transition matrix Π0 that, in turn, is used to obtain the
probability vector p0, where p0 is the left eigenvector of Π0 cor-
responding to the (unique) unit eigenvalue. Subsequently, prob-
ability vectors {p1,p2, . . .} are obtained at slow-time epochs
{t1, t2, . . .} based on the respective time-series data. The behav-
ioral changes from nominal condition are described as anomalies
that are characterized by a scalar called Anomaly Measure(M̂).
The anomaly measure is based on the following assumptions.

1) Assumption 1: The evolution of damage is an irreversible
process, i.e., with zero probability of self healing. This
assumption implies the following conditions for all time
t ≥ 0:

a) M̂ ≥ 0;
b) dM̂

dt ≥ 0.
2) Assumption 2: The damage accumulation at a slow-time

epoch t, when the dynamical system has reached a quasi-

steady-state equilibrium, is a function of the entire path
taken to reach that state.

Although the crack length is traditionally defined by a straight
line joining the starting point to the tip of the crack, the actual
crack follows a complicated path, possibly fractal in ductile
materials, to reach a particular point. Therefore, assumption 2
implies that the anomaly measure should be determined from the
actual path traversed and not just the end points. Accordingly,
the path traversed also called the scalar-valued anomaly measure
M̂k at a slow-time epoch tk is defined in terms of a distance
function d(·, ·) as

M̂k ≡ M̂(tk ) ≡
k∑

l=1

d
(
pl ,pl−1

)
(6)

d(x,y) =


 |A|∑

j=1

|xj − yj |α



1
α

(7)

where the exponent α ∈ [1,∞) depends on the desired sensi-
tivity to small deviations. Small changes in the signal profile,
which might be due to spurious fluctuations in the signal, can be
suppressed with large values of α. Therefore, the choice of α is a
tradeoff between suppression of small spurious fluctuations due
to noise and those due to the actual changes in the signal profile
resulting from damage growth. In this paper, the exponent is
chosen to be α = 2.0, which implies that d(·, ·) is the standard
Euclidean distance. The distance traveled is calculated from the
starting point (p0 ≡ uniform distribution obtained with maxi-
mum entropy partitioning) to the current time epoch along the
evolution of the probability vector (see Fig. 2).

VI. EXISTING PATTERN-RECOGNITION TECHNIQUES

This section briefly describes the following three pattern-
recognition techniques, which use time-series data as inputs,
for comparison with the symbolic-time-series-based anomaly
detection method:

1) PCA;
2) MLPNN;
3) RBFNN.
While details of these methods are provided in a previous

publication [15], they are briefly described in this paper for the
sake of completeness.

A. PCA

Feature extraction methods in statistical pattern recognition
determine an appropriate subspace of dimensionality q ∈ N,
where N is the set of positive integers, using either linear or
nonlinear methods in the original feature space of dimension-
ality n(q ≤ n). The best-known linear feature extractor relies
on the PCA or Karhunen–Loève expansion [13]. The eigenvec-
tors of the (n × n) (positive semi-definite) covariance matrix of
the time-series data, corresponding to the q largest eigenvalues,
form the n-dimensional patterns. The linear transformation is
defined as

Y = HX (8)
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where X is the given (n × d) pattern matrix, made of n
row vectors; H is the q × n linear transformation matrix whose
rows represent q feature vectors of dimension n; and Y is the de-
rived d × q pattern matrix. Since the PCA method uses the most
expressive features (e.g., eigenvectors with the largest eigenval-
ues), it effectively approximates the data by a linear subspace
using the mean squared error criterion.

To detect growth in anomaly from time-series data, PCA is
performed for dimensionality reduction. If the time response
of an appropriate process variable y(t) is sampled to generate
a time-series sequence yk , then data samples of large enough
length (� = dn) can be used to capture the dynamical character-
istics of the observed process. The length � of time-series data
is partitioned into d subsections, each being of length n = �/d,
where d>n. The resulting (d × n) data matrix is processed to
generate the (n × n) covariance matrix that is positive-definite
or positive-semidefinite real-symmetric. The next step is to com-
pute the orthonormal eigenvectors v1,v2, . . . ,vn and the cor-
responding eigenvalues λ1, λ2, . . . , λn that are arranged in de-
creasing orders of magnitude. The eigenvectors associated with
the first (i.e., largest) q eigenvalues are chosen as the feature
vectors such that ∑n

i=q+1 λi∑n
i=1 λi

< η (9)

where the threshold η � 1 is a positive real close to 0. The
resulting pattern is the matrix, consisting of the feature vectors
as columns

M̃ =
(√

λ1v1 · · ·
√

λqvq

)
. (10)

The above steps are executed for time-series data under the
nominal (stationary) condition to obtain M̃0. Then, these steps
are repeated at subsequent slow-time epochs {t1, t2, . . .} as the
(possible) anomaly progresses using the same values of param-
eters �, d, n, and q, used under the nominal condition, to obtain
the respective pattern matrices M̃1, M̃2, . . .. The anomaly mea-
sures at slow-time epochs {t1, t2, . . .} are obtained as

M̂k ≡ d
(
M̃k , M̃0

)
where d(·, ·) is an appropriately defined path-dependent distance
function as given by (6).

It should be noted that different metrics may be used as
anomaly measures as stated in [6]. One may choose the metric
that yields the most satisfactory result for the specified purpose.
Along this line, different metrics could be chosen for other
pattern-recognition techniques.

B. MLPNN for Anomaly Detection

The MLPNN is the most commonly used family of feed-
forward neural networks for pattern classification tasks [13].
The MLPNN is a collection of connected processing elements
called nodes or neurons [14], [21]. Its structure is fixed by
choosing the number of layers as well as the (possibly different)
number of neurons in each layer. The MLPNN is trained based
on the information contained in a given set of inputs and target
outputs. The training phase includes modeling of the input–
output system architecture and identification of the synapsis

weights. A set of inputs is passed forward through the network,
yielding trial outputs that are then compared to the target outputs
to obtain the error (i.e., the deviation of the trial output from the
target output). The network parameters (i.e., synapsis weights
and biases) are adjusted until the error is within specified limits.
If the specified bound is exceeded, the error is passed backwards
through the net and the training algorithm adjusts the synapsis
weights.

The back-propagation algorithm has been used in this paper.
The simplest implementation of back-propagation learning up-
dates the network weights and biases in the direction in which
the performance function decreases most rapidly. The mean
square error criterion is adopted in the recursive algorithm to
update the weight vectors {wk} as follows:

wn+1 = wn − αngn (11)

where gn is the gradient and αn is the learning rate.
Different layers in MLPNN may contain different numbers

of neurons. Time-series signals enter into the input layer nodes,
progress forward through the hidden layers, and finally emerge
from the output layer. Each node i at a given layer k receives a
signal from all nodes j in its preceding layer (k − 1) through a
synapsis of weight wk

ij and the process is carried onto the nodes
in the following layer (k + 1). The weighted sum of signals
xk−1

j from all nodes j of the layer (k − 1) together with a bias
wk

i0 produces the excitation zk
i that, in turn, is passed through

a nonlinear activation function f to generate the output xk
i from

the node i at layer k. This is mathematically expressed as

zk
i =

∑
j

wk
ij x

k−1
j + wk

i0 (12)

xk
i = f

(
zk

i

)
. (13)

Various choices for the activation function f are possible; the
hyperbolic tangent function f(x) = tanh(x) has been adopted
in this paper.

For anomaly detection, the MLPNN is trained by setting a set
of N input vectors, each of dimension �, and a specified target
output vector τ of dimension q. This implies that the input layer
has � neurons and the output layer has q neurons. If the time-
series data are obtained from an ergodic process, then a data
set of length N.� can be segmented into N vectors of length �
to construct the input and target pattern matrices, P . The input
pattern matrix P ∈ R

�×N is obtained from the N input vectors
as

P ≡ [p1p2 · · ·pN ] (14)

where pk ≡ [y(k−1)�+1y(k−1)�+2 . . . yk� ]T and each yk is a sam-
ple from the ensemble of the time-series data. The corresponding
output matrix O is the output of the trained MLPNN under the
input pattern P

O ≡
[
o1o2 · · ·oN

]
(15)

where oi ∈ R
q is the output of the trained MLPNN under the

input pk ∈ R
� . The performance vector u ∈ R

q is obtained as
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the average of the N outputs

u ≡ 1
N

N∑
k=1

ok . (16)

The time-series data under the nominal condition generates
the input pattern matrix P0 that, in turn, is used to train the
MLPNN with respect to a target output vector τ . The resulting
output of the trained MLPNN with P0 as the input is O0 and
the performance vector is u0. Subsequently, input pattern matri-
ces {P1,P2, . . .} are obtained at slow-time epochs {t1, t2, . . .}
and corresponding output matrices of the trained MLPNN are
{O1,O2, . . .}, which yield the respective performance vec-
tors {u1,u2, . . .}. The anomaly measures at slow-time epochs
{t1, t2, . . .} are obtained as

M̂k ≡ d(uk ,u0)

where d(·, ·) is an appropriately defined path-dependent distance
function as given by (6).

C. RBFNN for Anomaly Detection

The RBFNN is a commonly used tool for pattern identifica-
tion [14], where the activation of a hidden unit is determined by
the distance between the input vector and the prototype vector;
the RBFNN is essentially a nearest-neighbor type of classifier.
A radial basis function has the following structure:

f(y, α) = exp
(
−

∑
k |yk − µ|α

Nθα

)
(17)

where the exponent parameter α ∈ (0,∞); and µ and θα are
the center and αth central moment of the data set, respectively.
For α = 2, f(·) becomes Gaussian, which is the typical radial
basis function used in the neural network literature. To per-
form anomaly detection, the first task is to obtain the sampled
time-series data when the dynamical system is in the nominal
condition and then the mean µ and the central moment θα are
calculated as

µ =
1
N

N∑
k=1

yk and θα =
1
N

N∑
k=1

|yk − µ|α . (18)

The distance between any vector y and the center µ is obtained
as d(y, µ) ≡ (

∑
n |y(n) − µ|α )

1
α . Following (17), the radial ba-

sis function at the nominal condition is f0 = f(y). Under all
conditions including anomalous ones, the parameters µ and θ
are kept fixed. However, at slow-time epochs {t1, t2, . . .}, the
radial basis functions {f1, f2, . . .} are evaluated from the data
sets under the (possibly anomalous) conditions. The anomaly
measure at the epoch tk in the slow time scale is obtained as a
distance from the nominal condition and is given by

M̂k = d(f0, fk )
where d(·, ·) is an appropriately defined path-dependent distance
function as given by (6).

VII. EXPERIMENTAL VALIDATION

This section makes a comparative assessment of the
D-Markov machine method with different pattern-recognition

techniques for anomaly detection. Time-series data, generated
from experiments on the test apparatus in Fig. 1, have been
used for this purpose. Both the vibrators in the test apparatus
were excited by a sinusoidal input of amplitude 0.85 V and
frequency 11.39 Hz (approximately the resonance frequency)
throughout the run of each experiment. The time-series data of
the displacement sensor on Mass #3, which serve as an in-
dicator of the system performance, were collected from the
beginning of the experiments until breakage of specimens. The
ensemble of data were saved in a total of 35 files, with each
file containing a minute of sensor time-series data. Following
the procedure outlined in Sections IV–VI, the anomaly measure
was obtained from the data at each 2-min interval from the
sensor data contained in each file. The time-series data sets
were collected after the dynamic response attained the stationary
behavior. The data set at the time epoch of 2 min was taken as the
reference point representing the nominal behavior of the dynam-
ical system. These data sets were used to compare the anomaly
detection capability of the symbolic dynamics approach relative
to that of two existing pattern-recognition techniques: PCA and
Neural Network. Since symbol generation from the time-series
data is the crucial step in symbolic-dynamics-based anomaly
detection, this paper investigates two alternative approaches—
SFNN partitioning and WS partitioning.

The following anomaly detection approaches are investigated
by using the same set of time-series data generated from the
experiments on the test apparatus in Fig. 1:

1) PCA;
2) MLPNN;
3) RBFNN;
4) D-Markov machine with SFNN partitioning;
5) D-Markov machine with WS partitioning.
The description of how anomaly measures are calculated

based on the above five techniques of pattern recognition is
given later. The fourth paragraph addresses both SFNN and WS
methods of partitioning in the D-Markov method.

Following the PCA procedure described in Section VI-A, a
block of sampled time-series data, having length � = 12 000,
is divided into n = 4 segments of length d = 3000; these seg-
ments are arranged to form a 3000 × 4 data matrix. The re-
sulting 4 × 4 (symmetric positive-definite) covariance matrix
of the data matrix yields a monotonically decreasing set of
eigenvalues, λ1 . . . λ4, and the associated orthonormal eigen-
vectors v1, . . . ,v4. At the nominal condition, three eigenval-
ues are found to be dominant (i.e., q = 3) for a threshold of
η = 1.0 × 10−3 such that∑4

i=3 λi∑4
i=1 λi

= 0.0001 < η.

The matrix M̃0 in (10) is calculated from the data set at the nom-
inal condition. Similarly, the matrices M̃2, M̃4, . . . , M̃32 are
obtained corresponding to different time epochs, respectively.
The anomaly measures at different time epochs are determined
according to (6) relative to nominal matrix M̃0.

Following the MLPNN procedure described in Section VI-B,
the resulting pattern matrix P0 is made of N = 100 columns.
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Each column, having a length � = 25, is generated from the
time-series data at nominal condition to train the MLPNN that
is chosen to have a input layer (with 30 neurons), four hidden
layers (with 50 neurons in layer 1, 40 neurons in layer 2, 30
neurons in layer 3, and 40 neurons in layer 4), and the output
layer (with 5 neurons). This structure of the MLPNN yields
very good convergence for the data sets under consideration.
The target corresponding to each input pattern vector is cho-
sen to be 5 × 1 zero vector. The MLPNN is trained with the
nominal data set and the gradient descent back-propagation al-
gorithm has been used for network training with an allowable
performance mean square error of 1.0 × 10−5. The input pattern
matrices, P0,P2,P4, . . . ,P32, each of dimension (25× 100),
are then generated from the anomalous data sets at various time
epochs to excite the trained network. The resulting output ma-
trices of the trained MLPNN are O0,O2,O4, . . . ,O32, which
yield the respective performance vectors, u0,u2,u4, . . . ,u32.
The anomaly measures at different time epochs are determined
according to (6).

Following the RBFNN procedure described in Section VI-C,
the length of the sampled time-series data is chosen to be N =
12 000. The exponent α for standard RBF is usually chosen to
be 2, for improved anomaly measure sensitivity. An estimate of
the parameters µ and θα are obtained according to (18) based on
the data under the nominal condition, which yields the requisite
radial basis function f0 following (17). The anomaly measures
at different time epochs are determined according to (6).

Based on the time-series data of the nominal condition, the
first step in the D-Markov machine method is to find a parti-
tion for symbol sequence generation. The partitioning methods,
SFNN and WS, described in Section IV, have been investigated
for efficacy of anomaly detection. For the given stimulus of this
experiment, partitioning of the phase space/WS must remain
invariant at all epochs of the slow time scale. Absolute values of
the wavelet scale series data (see Section IV) were used to gen-
erate the partition because of the symmetry of the data sets about
their mean. The finite-state machine constructed with the choice
of the parameters |A| = 8 and D = 1 has only eight states and
it was able to capture early anomalies. Increasing the value of
|A| further did not improve the results and increasing the value
of depth D created a large number of states of the finite-state
machine, many of them having very small or zero probabili-
ties. Hence, the value of D = 1 was used for construction of
the D-Markov machine for data at all time epochs. Follow-
ing the procedure described in Section V, the state machines
are constructed to generate the connection matrix Π ≡ [πjk ]
and the state probability vector p for each slow time epoch.
The state machines were constructed with a symbol alphabet of
cardinality 8.

A. Comparison of Anomaly Detection Methods

The anomaly detection method is validated on the labora-
tory test apparatus in Fig. 1. Test runs are planned for exoge-
nous stimuli at one of the natural frequencies of the mechanical
structure to cause fatigue failure within reasonable length of
time. Using the same set of time-series data generated from the

Fig. 3. Performance comparison of anomaly detection methods.

above experiments, the five plots in Fig. 3 compare the anomaly
measures obtained by using the aforementioned five anomaly
detection approaches WS, SFNN, PCA, MLPNN, and RBFNN,
for the first 16 files (i.e., up to ∼32 min) when the service life
of the test specimen has expired, i.e., the specimen is about to
break. (Note: The estimated service life of the specimen un-
der this load excitation is ∼30 min.) The nominal condition is
chosen at the time epoch of 2 min to ensure that all transients
have decayed. Each of the five methods shows a sharp rise in the
anomaly measure at about 22 min, which is indicative of the tran-
sition from the crack-incubation to the crack-propagation phase
in fatigue damage. The symbolic time-series-based anomaly
detection with both WS and SFNN give better performance
than the three other existing pattern-recognition tools and are
responsive to progressive damage in the short-crack regime
till the time epoch of ∼22 min. At this time, cracks begin to
form, indicating the transition from crack incubation to crack
initiation.

Physical modeling of fatigue damage in the short crack re-
gion has not been dealt with significantly in technical literature.
Fig. 3 shows that symbolic time-series analysis under both WS
and SFNN partitioning is able to capture the progressive accu-
mulation of fatigue damage in the crack-initiation phase while
the performance of PCA and RBFNN is somewhat inferior and
MLPNN is the worst. This is indicated by the magnitude of
the anomaly measure as well as the change in slope starting at
∼15 min. Slope of the anomaly measure curve is representa-
tive of the rate of damage progression. The distributed nonlin-
earities in MLPNN may not be specifically suited to capture
these small parameter perturbations in the largely linear behav-
ior of the dynamic response of the vibrating structures. The
WS partitioning shows higher anomaly measure as compared
to PCA. The rationale is that the PCA method is dependent
on eigenvalues and eigenvectors of the covariance matrix that
is sensitive to measurement noise in the data acquisition pro-
cess. In contrast, the symbolic time-series analysis, with both
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WS and SFNN partitioning, is much less sensitive to (zero-
mean) measurement noise because of the inherent averaging
due to repeated path traversing in the finite-state machine. All
five anomaly detection methods exhibit a gradual increase in
anomaly measure from the beginning up to the time epoch of
∼22 min, when the transition takes place from the short- to the
long-crack regime. RBFNN, MLPNN, and PCA exhibit good
performance in the long-crack regime in the 24–28-min interval.
The specimen breaks at ∼28 min.

VIII. SUMMARY, CONCLUSION, AND FUTURE WORK

This paper experimentally validates a novel tool using WS
partitioning [6], [10] for the detection of evolving anomalies
in dynamical systems and compares it with existing pattern-
recognition techniques: PCA, MLPNN, and RBFNN. It is as-
sumed that the unforced dynamical system (i.e., in the absence
of external stimuli) is stationary at the fast time scale and that
any nonstationary behavior is observable only on the slow time
scale. Then, an HMM [6], [22], is constructed from the symbol
sequences in the form of a probabilistic finite-state automaton.
Anomaly measures at different slow-time epochs are obtained
in real time as the distance between the state probability distri-
bution at that epoch and the state probability distribution at the
nominal condition incorporating the path traversed by the state
probability vector. In this way, the anomaly measure quantifies
damage growth relative to the nominal condition.

The following observations are made from the analysis of
experimental data.

1) The results of symbolic time-series analysis on the labo-
ratory apparatus show that the evolution of fatigue crack
damage is detected in advance of component failure. This
is of paramount importance to health and usage monitor-
ing of machinery operations as it provides ample time to
take remedial control actions for life extension [12] and
reliability enhancement.

2) The symbolic time-series analysis, with WS and SFNN
partitioning, is more effective for the detection of evolving
anomalies in the crack initiation regime than the PCA,
MLPNN, and RBFNN methods.

A major conclusion, based on this specific experimental inves-
tigation, is that symbolic time series, along with the stimulus–
response methodology and having a vector representation of
anomaly, is effective for the detection of small anomalies due to
fatigue damage in ductile alloy materials.

Further theoretical and experimental research is recom-
mended in the following areas:

1) theoretical research, supported by experimental valida-
tion, in phase-space and wavelet-space partitioning for
generation of symbol sequences from time-series data;

2) validation of the symbolic time-series method for the de-
tection of fatigue damage in different materials with vari-
ous geometries and loading conditions;

3) understanding deeper aspects of fatigue crack initiation
using advanced sensing technology such as ultrasonics
and electromagnetics.
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